Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Subst Use Misuse ; 55(14): 2438-2442, 2020.
Article in English | MEDLINE | ID: covidwho-786882

ABSTRACT

BACKGROUND: The overwhelming fatalities of the global COVID-19 Pandemic will have daunting epigenetic sequala that can translate into an array of mental health issues, including panic, phobia, health anxiety, sleep disturbances to dissociative like symptoms including suicide. Method: We searched PUBMED for articles listed using the search terms "COVID 19 Pandemic", COVID19 and genes," "stress and COVID 19", Stress and Social distancing: Results: Long-term social distancing may be neurologically harmful, the consequence of epigenetic insults to the gene encoding the primary receptor for SARS-CoV2, and COVID 19. The gene is Angiotensin I Converting-Enzyme 2 (ACE2). According to the multi-experiment matrix (MEM), the gene exhibiting the most statistically significant co-expression link to ACE2 is Dopa Decarboxylase (DDC). DDC is a crucial enzyme that participates in the synthesis of both dopamine and serotonin. SARS-CoV2-induced downregulation of ACE2 expression might reduce dopamine and serotonin synthesis, causing hypodopaminergia. Discussion: Indeed, added to the known reduced dopamine function during periods of stress, including social distancing the consequence being both genetic and epigenetic vulnerability to all Reward Deficiency Syndrome (RDS) addictive behaviors. Stress seen in PTSD can generate downstream alterations in immune functions by reducing methylation levels of immune-related genes. Conclusion: Mitigation of these effects by identifying subjects at risk and promoting dopaminergic homeostasis to help regulate stress-relative hypodopaminergia, attenuate fears, and prevent subsequent unwanted drug and non-drug RDS type addictive behaviors seems prudent.


Subject(s)
Behavior, Addictive/genetics , Coronavirus Infections/metabolism , Dopamine/metabolism , Pneumonia, Viral/metabolism , Angiotensin-Converting Enzyme 2 , Anxiety/genetics , Anxiety/metabolism , Behavior, Addictive/metabolism , Behavior, Addictive/psychology , Betacoronavirus , COVID-19 , Coronavirus Infections/psychology , Dopa Decarboxylase/genetics , Dopa Decarboxylase/metabolism , Down-Regulation , Epigenesis, Genetic , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/psychology , Psychological Distance , Reward , SARS-CoV-2 , Stress, Psychological/genetics , Stress, Psychological/metabolism , Stress, Psychological/psychology , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism , Substance-Related Disorders/psychology , Suicide , Syndrome
2.
J Syst Integr Neurosci ; 72020 Apr 30.
Article in English | MEDLINE | ID: covidwho-771167

ABSTRACT

In the face of the global pandemic of COVID 19, approaching 1.75 Million infected worldwide (4/12/2020) and associated mortality (over 108, 000 as of 4/12/2020) as well-as other catastrophic events including the opioid crisis, a focus on brain health seems prudent [1] (https://www.coronavirus.gov). This manuscript reports on the systemic benefits of restoring and achieving dopamine homeostasis to reverse and normalize thoughts and behaviors of Reward Deficiency Syndrome (RDS) dysfunctional conditions and their effects on behavioral physiology; function of reward genes; and focuses on digestive, immune, eye health, and the constellation of symptomatic behaviors. The role of nutrigenomic interventions on restoring normal brain functions and its benefits on these systems will be discussed. We demonstrate that modulation of dopamine homeostasis using nutrigenomic dopamine agonists, instead of pharmaceutical interventions, is achievable. The allied interlinking with diverse chronic diseases and disorders, roles of free radicals and incidence of anaerobic events have been extensively highlighted. In conjunction, the role of dopamine in aspects of sleep, rapid eye movement and waking are extensively discussed. The integral aspects of food indulgence, the influence of taste sensations, and gut-brain signaling are also discussed along with a special emphasis on ocular health. The detailed mechanistic insight of dopamine, immune competence and the allied aspects of autoimmune disorders are also highlighted. Finally, the integration of dopamine homeostasis utilizing a patented gene test and a research-validated nutrigenomic intervention are presented. Overall, a cutting-edge nutrigenomic intervention could prove to be a technological paradigm shift in our understanding of the extent to which achieving dopamine homeostasis will benefit overall health.

SELECTION OF CITATIONS
SEARCH DETAIL